Chem. Ber. 111, 901-905 (1978)

Die Kristallstrukturen der Erdalkalimethanolate $M(OCH_3)_2$, M = Ca, Sr, Ba

Harry Staeglich und Erwin Weiss*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13

Eingegangen am 20. Mai 1977

Die Kristallstrukturen der Methanolate von Ca, Sr und Ba wurden aus Pulverdiagrammen ermittelt. Ca(OCH₃)₂, Sr(OCH₃)₂ und Ba(OCH₃)₂ sind isostrukturell und vom CaI₂-Strukturtyp. In diesen hexagonalen Schichtstrukturen liegen die Metallatome in einer Ebene; die Methanolat-Gruppen sind senkrecht dazu so orientiert, daß jede Schicht beidseitig durch die CH₃-Gruppen abgeschlossen wird. – Aus Breitlinien-¹H-NMR-Untersuchungen an Ca(OCH₃)₂ ergibt sich praktisch ungehinderte Rotation der CH₃-Gruppen bis -140° C.

The Crystal Structures of Alkaline Earth Methanolates M(OCH₃)₂, M = Ca, Sr, Ba

The crystal structures of the methanolates of Ca, Sr, and Ba have been determined from X-ray powder diagrams. Ca(OCH₃)₂, Sr(OCH₃)₂, and Ba(OCH₃)₂ are isostructural and belong to the CaI₂ structure type. In these hexagonal layer structures the metal atoms are arranged in a plane with methanolate groups perpendicular to it and the CH₃ groups at both surfaces of each layer. – From a wide-line ¹H-NMR investigation of Ca(OCH₃)₂ it follows that the CH₃ groups show nearly free rotation until -140 °C.

Anschließend an die Untersuchungen der Alkalimethanolate¹⁾ konnte nun auch die Struktur der Methanolate des Calciums, Strontiums und Bariums aufgeklärt werden.

Bisherige Untersuchungen von *Turova* et al.²⁾ ergaben, daß die Methanolate – wie auch ihre Hydroxide – hexagonal kristallisieren. Die Atomkoordinaten wurden von den Autoren nicht bestimmt.

Darstellung und Röntgenstrukturuntersuchung

Die Verbindungen wurden aus wasserfreiem Methanol und den Erdalkalimetallen analysenrein dargestellt und bei $80 \,^{\circ}\text{C}/10^{-3}$ Torr getrocknet. Die Präparate wurden bei sorgfältigem Luftausschluß, wie früher beschrieben³⁾, mit einem Zählrohrgoniometer vermessen (Cu-K_a-Strahlung).

In Übereinstimmung mit Literaturangaben²⁾ lassen sich die Pulverdiagramme hexagonal mit folgenden Zellparametern indizieren:

Ca(OCH ₃) ₂	a = 364(2),	c = 831(1) pm,	c/a = 2.28
Sr(OCH ₃) ₂	a = 391(1),	c = 842(1) pm,	$c/a\simeq 2.15$
Ba(OCH ₃) ₂	a = 417(2),	c = 837(2) pm,	c/a = 2.01.

- ¹¹ ^{1a} P. J. Wheatley, J. Chem. Soc. **1960**, 4270. ^{1b} H. Dunken und J. Krause, Z. Chem. **1**, 27 (1961). ^{1e} E. Weiss, Z. Anorg. Allg. Chem. **322**, 198 (1963). ^{1d} Helv. Chim. Acta **46**, 2051 (1963). ^{1e} E. Weiss und H. Alsdorf, Z. Anorg. Allg. Chem. **372**, 206 (1970).
- ²¹ N. Ya. Turova, B. A. Popovkin und A. V. Novoselova, Dokl. Akad. Nauk SSSR 167 (3), 604 (1966) [Chem. Abstr. 65, 1504e (1966)], Engl. Transl.: Proc. Acad. Sci. USSR 167, 370 (1966).
- ³⁾ E. Weiss und W. Büchner, Z. Anorg. Allg. Chem. **330**, 251 (1964).

© Verlag Chemie, GmbH, D-6940 Weinheim, 1978

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Iab. 1. Netz	ebenenabstä	inde und J	Reflexintens	sitäten de	r Erdalkalir	nethanolate				
beoh. but intensitiat here beoh. but intensitiat here beoh. but intensitiat here beoh. but intensitiat here beoh. but but is such as a sub intensitiat here beoh. but is such as a sub is such as a such			Ca(OCH ₃) ₂	•				Sr(OCH ₃) ₂	,				Ba(OCH ₃) ₂	,	
830 831.80 326 346 001 835 84.249 233 232 001 835 83.600 310 310 311 313 <		beob.	(pm) ber.	Inte beob.	nsität ber.	hkl	d (d beob.	pm) ber.	Inter beob.	ısıtät ber.	hki	d (beob.	.pm) ber.	lnte beob.	nsität ber.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		830	831.80	326	346	001	835	842.49	233	232	001	835	836.00	310	316
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	415.6	415.90	300	283	002	421	421.00	163	181	002	418.7	418.00	160	171
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	313.9	313.92	61	73	100	338.6	338.62	38	42	100	363.0	363.13	241	234
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	ſ	294.74	I	4	101	315	314.16	37	27	101	335.7	334.52	200	181
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	277.6	277.27	154	161	003	281.4	280.67	206	193	003	277.2	278.67	215	191
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	249.8	251.22	55	26	102	263	263.86	155	144	102	273.4	273.27	187	185
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	1000	∫ 209.09) 66	103	215.6	216.06	156	148	103	I	220.62	Ι	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	7.007	208.49	747	{ 145	004	210.0	210.50	147	149	004		<pre>{ 210.66</pre>	167	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	183.2	182.80	175	186	110	195.3	195.50	215	223	110	710.0	210.10	<u>cci</u>) 79
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	179.1	179.79	160	143	111	189.2	188.43	235	198	111	202.1	202.30	164	175
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ſ	173.47	l	24	104	I	178.77	l	ŝ	112	187.3	186.58	53	63
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0 271	f 168.16	27	(31	112	177.6	177.31	62	59	104	I	180.89	Ι	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ś	0./01	(167.65	60	(31	200	169.0	168.81	69	63	200	181.3	180.57	60	<i>LL</i>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		157.9	157.63	27	17	005	ł	168.40	Ι	15	201	i	176.50	I	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	154.9	154.86	162	172	201	166.0	165.99	60	54	005	I	167.20	Ι	22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	152.4	152.15	54	69	113	160.5	160.42	65	55	113	167.1	166.94	71	88
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		148.0	147.89	157	140						202	ł	165.76	Ι	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	l	147.02	I	ŝ						105	١	151.73	Ι	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	۱	138.50	I	1						203	I	151.54	I	6
$\begin{array}{rrrrr} 1 & 136.92 & 125.5 \\ 5 & - & 126.80 & - & 6 \\ 1 & 125.9 & 125.57 & 60 & 71 \end{array}$	~	136.0	J 137.15	157	5 82						114	147.4	146.50	66	63
5 - 126.80 - 6 1 125.9 125.57 60 71	_	1.0.77	(136.92	7	(68										
4 125.9 125.57 60 71	<u>``</u>	۱	126.80	I	9										
	4	125.9	125.57	60	71										

902

Jahrg. 111

Aus Zellvolumen und den veröffentlichten Dichten²⁾ ergibt sich Z = 1. Systematische Auslöschungen wurden nicht beobachtet.

Somit kann der frühere Strukturvorschlag (Raumgruppe $P\bar{3}m1-D_{3d}^3$) bestätigt werden. Bei diesem liegen die Metallatome in den Eckpunkten der Elementarzelle. O und C besetzen die Lagen $\frac{1}{3}$, $\frac{2}{3}$, z und $\frac{2}{3}$, $\frac{1}{3}$, z. Es waren daher nur die z-Koordinaten der C- und O-Atome durch LSQ-Rechnungen⁴⁾ festzulegen. Eine Lokalisierung der H-Atome aus den Pulverdaten ist nicht möglich.

Tab. 1. enthält die Netzebenenabstände und Reflexintensitäten, Tab. 2 die verfeinerten Atomkoordinaten von C und O und deren Temperaturfaktoren.

Tab. 2. Atomkoordinaten und Temperaturfaktoren von C und O. Der isotrope Temperaturfaktor beträgt $\exp(-B\sin^2\Theta/\lambda^2)$ mit $B[Å^2]$; $R(I) = \Sigma |I_o - I_c|/\Sigma I_o$.

	z _o	z _c	R(I)	B _{Metall}	B _O	B _C
Ca(OCH ₃) ₂	0.082(8)	0.255(17)	10.3%	3.1(2)	3.3(2)	5.5(2)
Sr(OCH ₃) ₂	0.096(6)	0.261(7)	9.2%	2.8(1)	2.7(2)	4.6(2)
Ba(OCH ₃) ₂	0.101(8)	0.267(7)	11.3%	2.8(1)	2.4(2)	4.1(2)

Beschreibung der Strukturen

Die resultierende Struktur ist in Abb. 1 dargestellt. Dabei entsprechen die mit C_t und C_{II} gekennzeichneten Kalotten etwa den Wirkungssphären von CH₃-Gruppen. Tab. 3 enthält die wichtigsten Atomabstände und Winkel.

Abb. 1. Hexagonale Elementarzelle von $M(OCH_3)_2$ (Zellursprung gegenüber der üblichen Aufstellung von (0, 0, 0) nach $(0, 0, \frac{1}{2})$ verschoben

Die Erdalkalimethanolate weisen, ähnlich wie die Alkalimethanolate (vgl. Abb. 2), eine Schichtstruktur auf. Sie entspricht dem CaI₂-Strukturtyp und besitzt große Ähnlichkeit mit der LiOCH₃-Struktur. Dabei liegen die Metallatome in einer Ebene mit beidseitig

⁴⁾ Berechnungen mit Hilfe eines modifizierten Programms ORXFLS 3 von W. R. Busing, K. O. Martin und H. A. Levy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

	$Ca(OCH_3)_2$	$Sr(OCH_3)_2$	Ba(OCH ₃) ₂
$M_I - M_{II}$	364(2)	391(2)	417(2)
$M_I - O_{II}$	224(2)	240(3)	255(4)
$O_1 - C_1$	140(3)	139(3)	139(3)
$C_I - C_{II}$	459(3)	461(3)	459(3)
$O_I - O_{II}$	248(3)	244(3)	248(3)
$M_{I} - O_{I} - C_{I}$	109(2)°	109(2)°	109(2)°
	. ,		()

Tab. 3. Wichtigste Atomabstände (in pm) und Winkel in den Erdalkalimethanolaten. (Bezeichnung der Atome entspr. Abb. 1.)

dazu senkrecht angeordneten OCH₃-Gruppen. Jedes O-Atom ist tetraedrisch von C und drei Metall-Atomen koordiniert (Valenzwinkel M-O-C 109(2)°). Die Metall-O-Abstände (224, 240 und 255 pm) sind deutlich kürzer als in den entsprechenden Erdalkalioxiden (CaO 241, SrO 258 und BaO 276 pm, Koordinationszahl 6). Ähnliche M-O-Abstandsverkürzungen findet man bei den Alkalimethanolaten im Vergleich zu den Oxiden M₂O. Sie sind vorwiegend auf die geringere negative Ladung des O-Atoms in den Methanolaten zurückzuführen.

Breitlinien-¹H-NMR-Untersuchungen zur Rotation der CH₃-Gruppen in Ca(OCH₃)₂

Somit bilden die bisher untersuchten Alkali- und Erdalkalimethanolate Schichtstrukturen mit tetragonalen bzw. hexagonalen Elementarzellen (Abb. 2). Die kurze Gitterkonstante *a* in LiOCH₃ (355 pm) und in Ca(OCH₃)₂ (365 pm) ist ein direktes Maß für den kürzesten Abstand von in derselben Schicht benachbarten CH₃-Gruppen (Radius ca. 180 pm). Dagegen liegt in KOCH₃ (395 pm), Sr(OCH₃)₂ (391 pm) und Ba(OCH₃)₂ (417 pm) eine nur geringe gegenseitige Behinderung der CH₃-Gruppen vor.

Abb. 2. Elementarzellen der Erdalkali- und Alkalimethanolate

Schon früher^{1c)} war bei den tetragonal kristallisierenden Alkalimethanolaten die Möglichkeit einer Rotation der CH₃-Gruppen um ihre dreizählige Achse diskutiert worden. Anderenfalls müßten für diese Verbindungen niedrigersymmetrische Raumgruppen gewählt oder bei starrem Gitter eine statistische Unordnung der CH₃-Orientierungen angenommen werden.

Zur Feststellung von CH_3 -Rotationen im Gitter eignen sich Breitlinien-¹H-NMR-Messungen⁵⁾. Frühere Messungen⁶⁾ an KOCH₃ bei Raumtemperatur ließen auf eine Rotation der CH₃-Gruppen schließen.

Nunmehr wurde Ca(OCH₃)₂ im Temperaturbereich von Raumtemperatur bis -190 °C untersucht (Abb. 3). Auch hier zeigte sich entsprechend dem kleinen Wert des gemessenen 2. Moments (Mittel 7.7 Oe²), daß bis -140 °C praktisch ungehinderte Rotation auftritt. Bei weiterer Abkühlung verlangsamen sich dann die Bewegungen deutlich, doch dürften nach dem Verlauf der Meßkurve selbst bei -190 °C ($M_2 = 30.6$ Oe²) die Rotationen noch nicht völlig eingefroren sein.

Abb. 3. Zweites Moment von Ca(OCH₃)₂

Wir danken Herrn Dr. W.-D. Basler, Institut für Physikalische Chemie der Universität Hamburg, für seine Unterstützung bei den NMR-Messungen und dem Fonds der Chemischen Industrie für Sachbeihilfen.

[172/77]

⁵⁾ E. Weiss, H. Alsdorf, H. Kühr und H.-F. Grützmacher, Chem. Ber. 101, 3777 (1968).

⁶⁾ H. Kühr, Diplomarbeit, Univ. Hamburg 1966. zitiert in ^{1c)}.